Nitrous install

Moderator: Moderators

Anonymous

Gawd

Post by Anonymous »

OH sorry :shock:
Anonymous

Post by Anonymous »

Posted the same time Bob , only you started your's an hour before me. :lol:

Hey Bob , as you well know , lean = safe , rich = parts killer. ;)

:thumbright:
Anonymous

Waffle on

Post by Anonymous »

I am just old and waffle on to much :cry:
Anonymous

Re: Waffle on

Post by Anonymous »

Knightcharger wrote:I am just old and waffle on to much :cry:
Taught me a few things. ;)

:thumbright:
Anonymous

Ok

Post by Anonymous »

Ok you asked for it.

Nitrous oxide is an oxygen-bearing compound. Its chemical designator is N2O, so we know each nitrous oxygen molecule has two nitrogen atoms and one oxygen atom.

A nitrous oxide molecule is made up of 2 atoms of nitrogen and 1 atom of oxygen. By weight it is 36% oxygen (air is only 23.6% oxygen). At 70° F it takes 760 PSI of vapour pressure to hold nitrous in liquid form. The critical temperature is 97.7° F; at this temp the vapour pressure can no longer hold the nitrous in liquid form. At this point the nitrous turns gaseous and will be at 1069 PSI. As temperature rises further, so will pressure, but it will remain in gaseous form. If you intend to siphon liquid nitrous, it is important to keep the temperature below 97.7°. When liquid nitrous is released, it will go from 760 PSI to 14.7 PSI (normal atmospheric pressure). It will then begin to boil and rapidly expand; the pressure drop will cause the temperature to decrease. Nitrous boils at 129.1°F below zero.
Nitrous oxide systems make large amounts of torque by allowing an engine to burn more fuel at a lower rpm range than normal. Burning more fuel this way creates a longer burn period (and slightly higher cylinder pressures, if the timing is not corrected), that will push down on the pistons with greater average force. When the nitrous is injected into an engine and the initial combustion takes place, it creates enough heat to separate the nitrous oxide into its two components, nitrogen and oxygen. Once separated, the additional oxygen is then free to allow combustion of the additional fuel, while the released nitrogen acts as a buffer against detonation and damps mechanical loads.

To run nitrous successfully and safely, you have to introduce precise amounts of additional fuel with precise amounts of nitrous oxide. All of the extra oxygen provided by the nitrous oxide must have fuel with which to burn or you may damage your engine severely. When the amount of nitrous and the amount of supplemental fuel is controlled precisely, your engine can safely and reliably generate exceptional power increases.

Combustion
Nitrous oxide does not burn, it is an oxidiser. It provides more oxygen, so more fuel can be burned, and the result is more power. The atoms in a nitrous oxide molecule are bonded together. The oxygen is not free, but fortunately the bond breaks down as temperature rises. At 565° F, the bond is broken and the oxygen is then free. Combustion temperatures are much more than 565°, so it's not a problem. By adding nitrous oxide to an engine, the total amount of oxygen is increased while the volume of nitrogen is decreased (as a percentage of the whole). This speeds the burn rate and requires less timing advance for peak output. It is hard for many people to grasp gaining power with less timing, but it's a fact. Peak cylinder pressure must occur at approximately 20°ATDC to make peak power. If you speed the burn rate, peak cylinder pressure will occur too soon. It is easy to run too much ignition advance with nitrous, but too much will not only hurt power, it can quickly bring a nitrous engine into detonation and destroy it.

Detonation
Large power increases achieved by using nitrous oxide can increase the chance of detonation. To keep the engine out of detonation, you must control the extra heat that nitrous can make. The easiest way to do this is to add more fuel. All nitrous systems come with rich jetting to give you a safe starting point. The extra fuel takes away heat and raises the detonation limit. If you don't try to over do it, and keep the hp levels within reason, running slightly richer should be all you'll need to control detonation. Running richer will reduce the power output, but raising the detonation limit will allow more nitrous to be used to get more power.

Nitrous-to-fuel Ratios
The chemically correct nitrous to petrol ratio is 9.649:1. If a nitrous engine runs lean, it can destroy the engine in a matter of seconds. There must be enough fuel to maintain this correct ratio, if there isn't, temperatures rise rapidly. The oxygen that was left over from burning the limited amount of fuel will result is a lean burn situation raising cylinder temperatures and melting components. So don't run lean.

Cooling Effects
Cooler intake air is denser and contains more oxygen atoms per cubic foot. So cooler air will allow more fuel to be burned and in turn, make more power. A 10 degree drop in temperature can add 1 to 1.5% power to an engine. Nitrous oxide boils at -129°F and it will begin to boil as soon as it is injected. This can cause an 80° or so drop in manifold air temperature. Now if we are dealing with say a 400 hp engine, we can see a gain of well over 30 hp from the cooling effect alone. This cooling effect also helps the engine deal with detonation.

Average Power
If you were to build a 350 hp 3.5 Rover V8, it would have to rev to 7000+ rpm to make that kind of power and only make power over a narrow rpm range. A nitrous injected 3.5 Rover V8 making 350 hp would make that power at a much lower rpm with a higher average horsepower. So the nitrous engine will out perform the normally aspirated engine by a healthy margin. The reason is that nitrous flow remains constant no matter what rpm the engine is running at. At lower speeds there is more time for the nitrous to fill the cylinders, so you get more nitrous in the cylinders per power stroke at lower rpm. This will boost torque and consequently power more at low rpm. As rpm increases, you will get less nitrous per power stroke, but the engine will start making more normally aspirated power. This really flattens out the torque curve and widens the power band.
Anonymous

Post by Anonymous »

Some of that article is wrong , too much fuel is an engine killer , lean is better/safer.

We proved it Bob , also nitrous guru Monte Smith knows his stuff.

:thumbright:
Anonymous

Post by Anonymous »

Is that the guy who pebble dashed the underside of his bonnet with molten aluminum talking :D
Actually Ad is right to much fuel and it will seep behind the top ring detonate and try to turn the top of the piston into frisby.
That's why NO2 makes you laugh trying to find the right balance :thumbright:
Anonymous

Post by Anonymous »

Knightcharger wrote:Is that the guy who pebble dashed the underside of his bonnet with molten aluminum talking :D
Actually Ad is right to much fuel and it will seep behind the top ring detonate and try to turn the top of the piston into frisby.
That's why NO2 makes you laugh trying to find the right balance :thumbright:
:D

Yea , that backfire that blew the carb to bits had me scratchin me head for a while , was a misfire due to pulling to much timing through the controller , caught the next cylinder when the intake was still open , 300 shot to boot :D
Anonymous

Kerboom

Post by Anonymous »

Ad the best bit was that you managed to drive back to the pits with the middle in the carb missing :D
User avatar
Jeff
Posts: 7972
Joined: Sun Apr 18, 04 11:09 pm
Location: Ontario.
Contact:

Post by Jeff »

Thanks guys, I have it all planned out in me head now. Apart from the fuel cell connections. I will post some pics later. I need some help with the connectors I am going to need. Otherwise, I think that is it. Bob, The ideal thing about installing it in me little pick up is, it is all outside, and all close to the motor!

I am not going to fret is the motor can't handle it Adam.... HeHe! It is not the motor I would choose to run in the truck. 383ci or 400ci would be my favorite choice, but I have to be a bit sensible at the moment.
I am keeping this Mopar....... SOLD!
User avatar
Jeff
Posts: 7972
Joined: Sun Apr 18, 04 11:09 pm
Location: Ontario.
Contact:

Post by Jeff »

first question...... This connector is very tight, and does not seem to want to seat. Do you have to give it welly? Bit scared of screwing it up!
Image

second question.... What size connector do I need for the solenoids?
Image

third question.... I need the same size connector as above, but for a hose connection to some -6 hose. (left side, I have to remove plug)
Image

forth question.... I need to blank this off, i measured tis at 1 1/8" across the thread, right connector.
Image
Last edited by Jeff on Thu Apr 30, 09 11:55 am, edited 3 times in total.
I am keeping this Mopar....... SOLD!
User avatar
Jeff
Posts: 7972
Joined: Sun Apr 18, 04 11:09 pm
Location: Ontario.
Contact:

Post by Jeff »

oops
I am keeping this Mopar....... SOLD!
Anonymous

Bits and bobs

Post by Anonymous »

Hi Jeff,
The pipe to bottle fitting should have a white fibrous washer ins9ide which is a safety devise so that if the bottle over pressurises it will blow past and should be tightened with a normal spanner pull.

The thread into the solenoids is usually 1/8 NPT.
The fitting will have a 3 8 or 6AN thread on the other end.

The right side fitting needs a 10 AN blanking fitting

The fitting on the right is 6 AN male so you need a 6 AN female to pipe fitting.
User avatar
Jeff
Posts: 7972
Joined: Sun Apr 18, 04 11:09 pm
Location: Ontario.
Contact:

Post by Jeff »

Thanks Bob.... It has what looks like a white nylon washer in there at the moment. Thanks for the size info, I will get that all ordered up tonight. :thumbright:
I am keeping this Mopar....... SOLD!
User avatar
Jeff
Posts: 7972
Joined: Sun Apr 18, 04 11:09 pm
Location: Ontario.
Contact:

Post by Jeff »

Slowly getting final parts....
I am keeping this Mopar....... SOLD!
Post Reply